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ABSTRACT 

Analytical expressions are developed for the direct computation of 

infrared transmission as a function of the amount, pressure, and 

temperature of the absorber. The parameters that are necessary for 

the application of the expressions are tabulated over the wave number 

range between 25 and 2150 per centimeter (400 to 4.65 microns in wave- 

length) in intervals of 25 per centimeter. Comparisons are made 

between the computed transmissions and corresponding transmissions that 

have been presented in recent literature. 



I INTRODUCTION 

The distribution of atmospheric patterns of absorption and emission of 

long-wave radiation varies with evolving meteorological conditions and 

identifies sources and sinks of energy. With the advent of infrared 

measurements from satellites, greater urgency has been placed on the 

adequate description, in some spectral detail, of the concurrent radiation 

field between satellite altitudes and the surface of the earth. In lieu 

of networks for obtaining routine tropospheric radiation measurements, a 

convenient numerical method could provide a means for establishing 

relationships between infrared data and significant atmospheric properties. 

In any model of infrared radiative transfer the paramount problem 

is that of properly specifying the transmission through different spectral 

regions. If the model is oversimplified, significant radiative properties 

may be overlooked or distorted; if the model is too sophisticated, it will 

not be practicable for routine application to sizable quantities of data. 

In general, the minimum complexity demanded of a model is related to the 

desired spectral resolution and the significance of any computation depends 

on the reliability of the basic meteorological data. 

For this investigation a transmission representation was considered 

satisfactory if it met the following requirements: 

(1) It should be reproducible and practicable for objective applica- 

tion without excessive empiricism or data listings. 

(2) It should respond adequately to the variable pressure, temperature, 

and absorber conditions of the troposphere and lower stratosphere. 

(3) It should be capable of representing the transmission over wave 
-1 

number intervals of about 50 cm or less. 

(4) It should be compatible with available experimental data, and 
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flexible enough to permit a simple adaptation to new data that 

becomes available. 

Since many methods for describing transmission have been used, it is 

likely that different opinions exist regarding the relative merits of 

applied techniques. It is not likely that most models would completely 

satisfy all of the requirements listed above. The purpose of this report 

is to present a practical model f o r  making direct computations of transmission 

for a variety of applications. 

I1 EWIRICAL REPRESENTATION 

An empirical representation of the transmission must be bounded by the 

limits of unity and zero. As these limits are approached, uncertainty 

arises when absorber amounts and pressures are encountered for which trans- 

mission data do not exist. In general, extensive testing is necessary to 

ensure that the transmission functions behave in a proper physical sense 

for all variations in the conditions to which they may be applied. One type 

of difficulty may arise in the spectral region of transition from one 

transmission form to another (c.f., Wark, et al., 1964). In addition, within 

a given spectral interval, there are physical constraints to the derivatives 

of the transmission functions. For example, as a given layer is extended 

from a fixed level in the atmosphere toward lower pressure and temperature, 

even with only a very slight increase in absorber amount, the transmission 

should decrease. In contrast, the lower pressure and temperature may tend 

--- 

to increase the transmission through a fixed optical thickness. Thus the 

pressure and temperature must be inserted with care in the transmission 

expression. Unfortunately, it is difficult to accurately specify the proper 

effective pressures and temperatures for application to all types of non- 

homogeneous paths. 
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I 

Since one purpose of an empirical representation is to provide the 

average transmission over a finite spectral interval, the nature of the 

representation will be strongly dependent on the width and location of the 

interval. Figure 1 illustrates some of the transmission variations with 

wave number and spectral width in a weak absorption region of a carbon 

dioxide band. All of the data for Fig. 1 were taken from Stull et al,, --- 
(1963). 

width of 

overlap. 

centered 

apparent 

The two dashed curves are based on computations for a spectral 

50 cm , centered at 550 cm and 575 cm , with a 50-percent 

The three solid curves refer to spectral widths of 20 cm , 

-1 -1 -1 

-1 

-1 at intervals of 10 cm in the same spectral region. It is 

from Fig. 1 that in certain spectral regions the shapes of the 

transmission curves may change significantly as the width of the spectral 

interval changes. Furthermore, the three solid curves show that the average 

of the transmissions at 570 cm 

transmission at 560 cm . It may be inferred that, in general, it is not 

proper to apply a transmission which has been determined at a particular 

spectral width to another spectral width, or to assume that the smoothed 

transmission varies linearly with wave number. Finally, the absolute values 

of the transmission may change rapidly with wave number (note the dashed curves 

in Fig. 1) so that comparisons of transmissions from different sources should 

allow for real differences unless both the spectral width and location are 

identical. 

-1 and 550 cm-l differs from the actual 

-1 

In order to attach physical significance to an empirical model or to 

provide for a logical adjustment of the model parameters to fit new data, 

it is necessary to establish the basic framework upon which the model was 

developed. The extensive analyses leading to the model presented here are 

omitted, but a brief review of the framework is given below. 
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I11 TRANSMISSION THROUGH WATER VAPOR 

As a focal point for the analysis of laboratory data or theoretical 

computations, it is convenient to extract from the data an absorber amount 

which is associated with a fixed moderate transmission. In this study 

W is defined as the absorber amount, variant with pressure and temperature, 

for which the transmission is one-half. In order to develop a representa- 

h 

tion of all transmissions, the W must be incorporated in a general 

expression. For water vapor bands, the basic expression chosen for the 

h 

representation was that of Goody (1952), given by 

where T is the transmission, W is he amoun of precipi-able water along t le 

path, 6 is the mean line spacing, 0 is the mean line strength, and CY is the 

mean half-width for a small spectral region. 

Eq. (1) may be solved in terms of DKY in the form 

At a transmission of one-half, 

where 3 -An* and the quantity in braces is denoted by g. If the subscript 

s is used to denote standard conditions and if the half-width is expressed 

in the form CY = KY 

be rewritten as 

- P , presumably at standard temperature, then Eq. 
PS 

(1) may 



Both c o e f f i c i e n t s  P , a n d y r - -  g 

@S =@S 

2 .  where P is t h e  p re s su re  r a t i o - ?  I? E - 

y and 8 a r e  somewhat p r e s s u r e  dependent through t h e  t e r m  i n  g ,  b u t  t h e i r  
pS 

r a t i o ,  r ,  i s  independent of pressure :  

A f t e r  i n s e r t i n g  t h e  d e f i n i t i o n s  of g and r i n  t h e  d e f i n i t i o n  of p, the  

d e s c r i p t i o n  of B as a func t ion  of p re s su re  becomes 

The P t e r m  i n  Eq. (5) is n e g l i g i b l e  a t  t h e  lower p r e s s u r e s  i n  the atmosphere. 

From Eqs. (3)) (4 ) )  and (5) i t  i s  apparent  t h a t  t h e  key parameters i n  t h e  

s p e c i f i c a t i o n  of T a r e  W and r. The e m p i r i c a l  f i t t i n g  of t h e s e  parameters 

probably c o n s t i t u t e s  some depa r tu re  from t h e  randomness of t h e  Goody model. 

h 

The f i r s t  s t e p  of t h e  a n a l y s i s  i n  t h i s  i n v e s t i g a t i o n  was t o  determine 

W a s  a f u n c t i o n  of wave number, p r e s s u r e ,  and temperature.  Then, w i th  t h e  

a i d  of a t h e o r e t i c a l  f i r s t  guess ,  t he  r a t i o  r was s e l e c t e d  on t h e  b a s i s  of 

success ive  t r i a l s  l ead ing  t o  t h e  d e s i r e d  t r ansmiss ion .  To a good approxima- 

t i o n ,  t h e  parameter r was taken  a s  c o n s t a n t  over an e n t i r e  a b s o r p t i o n  band. 

h 

Examination of W d a t a  from a number of sou rces  suggested t h a t ,  a l though h 

Wh changed markedly w i t h  wave number, t h e  r e l a t i o n s h i p  of W 

remained n e a r l y  cons t an t  over most of t h e  i n t e r v a l s  of a band. 

r e p r e s e n t a t i o n  was adopted i n  t h e  convenient  form 

t o  p re s su re  

The Wh 

h 

1 [ I  
- = L.  P” (fl bv 
‘h 
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0 

I 

where L, is  t h e  va lue  of - 
wh 

exponent n i s  cons idered  cons t an t  over an e n t i r e  band, and t h e  exponent 

b of t he  tempera ture  r a t i o  is  a func t ion  of wave number. The parameters 

L,, n, and b 

I V  

a t  s tandard  p r e s s u r e  and tempera ture ,  t h e  

1) 

were determined empi r i ca l ly .  
V 

THE 1595 c m - l  BAND OF WATER VAPOR 

For t h e  s p e c i f i c a t i o n  of t r ansmiss ion  through t h e  1595 c m  band of 
-1 

water  vapor,  d a t a  from Cowling (1950), Daw (1956), Howard e t  a l .  (1956), 

Burch e t  a l .  (1962), Wark e t  a1.(1962),  and Wyatt e t  a1.(1962) were cons idered .  

Cowling's d a t a  were used only  f o r  checking a t  s t a n d a r d  c o n d i t i o n s ,  and 

Daw's d a t a  were used only  a s  an a i d  t o  t h e  e v a l u a t i o n  of t h e  p r e s s u r e  

dependence of Wh. The p r e s s u r e  exponent n [see Eq. ( 6 ) ]  was found t o  

vary  between 0.7 and 0.95. 

been a s s o c i a t e d  w i t h  exper imenta l  s c a t t e r ,  some v a r i a t i o n  of n can be expected 

w i t h  p re s su re  i t s e l f  and ,  t o  a l e s s e r  e x t e n t ,  w i t h  wave number. S ince  a 

- -- 

--- --- --- 

Although much of t h e  v a r i a b i l i t y  could  have 

s l i g h t  v a r i a t i o n  i n  n i s  not  a dominant f a c t o r  i n  t h e  water-vapor model, 

a mean va lue  of 0 .85  w a s  adopted f o r  a l l  wave numbers. I f  t h e  model was 

t o  be app l i ed  t o  a s i n g l e  pressure  r e g i o n  on ly ,  an  optimum va lue  of n could 

be determined, b u t  a t  the  lowest p r e s s u r e  t h e  u n c e r t a i n t y  i n  water-vapor 

amount becomes t h e  dominant f a c t o r .  

The de te rmina t ion  of L, a s  a f u n c t i o n  of wave number was based on 

Howard e t  a l .  (19561, Burch e t  a l .  (1962), and Wyatt e t  a l .  (1962). Prime -- --- --- 
emphasis was g iven  t o  the  l abora to ry  d a t a  of Burch e t  a l . f o r  t h e  gene ra l  

shape of t h e  curve  of L, ver sus  wave number, and f o r  t h e  wave-number 

l o c a t i o n  of p r i n c i p a l  t r ansmiss ion  f e a t u r e s ,  e s p e c i a l l y  nea r  t h e  band 

--- 

center. A s h i f t  o f  t h e  d a t a  from Howard e t  a l . w i t h  wave number was 

necessa ry ,  i n  o r d e r  t o  b r i n g  t h e i r s  i n t o  l i n e  w i t h  t h e  o t h e r  d a t a .  From 

-- 
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-1 -1 -1 1200 cm to 2150 cm L was tabulated fo r  intervals with widths of 25 cm 

Since most of the data had been smoothed over intervals a s  l a r g e  as 5 0  ern 

before the tabulation, the appropriate application of the transmission model 

should include two or more successive intervals. 

V 
-1 

-1 
The temperature effect on the transmission through the entire 1595 cm 

band is of minor importance to the total atmospheric emission, and no 

temperature dependence was included in the transmission function. However, 

instead of a final tabulation of L for standard temperature, an adjustment 

was made to a mean atmospheric temperature of -2OC by making use of the 

detailed theoretical computations of Wyatt et al. This value of - for an 

average atmospheric temperature and for standard pressure was denoted by L , 

Temperature adjustments in the central portion of the band are reversed 

from those in the wings. 

V 

1 
wh * 

V 

After a number of successive trials of the model against available data 

the value of 4.9 was assigned to the ratio r and the transmission for the 

1595 cm-l band was expressed by 

- 1 
2 * 

V 
where B = 1.18 + (1.38 + 0.48P2) and tabulations of L 

Transmissions computed from Eq. (7) for  two arbitrary intervals at three 

pressures are illustrated in Fig. 2 with the corresponding representations 

of Wark et a1.(1962) and Wyatt et al. Deviations of computed points from 

the curves of Werk et al. (1962) are probably some measure of residual 

uncertainty. The data of Wyatt et al.refer to a slightly narrower spectral 

width (20 cm-l) and are centered at slightly smaller wave numbers than the 

other curves. 

are included in Table 1. 
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V THE ROTATIONAL BAND OF WATER VAPOR 

The a n a l y s i s  in t h e  r o t a t i o n a l  band was based p r i m a r i l y  on t h e  d a t a  of 

Palmer (1960) 

f o r  t h e  remainder of t h e  r eg ion  between 25 c m  and 800 c m  . Values of 

L 

manner a s  f o r  t h e  1595 cm band. Pa lmer ' s  d a t a  were s e p a r a t e d  accord ing  

f o r  t h e  200 to  500 cm-l r e g i o n  and on Yamamoto and Onish i  (1949) 

-1 -1 

f o r  25 cm-l i n t e r v a l s  were obta ined  from smoothed W cu rves  i n  t h e  same 
U h 

-1 

t o  p r e s s u r e ,  and analyzed a long  with p r e s e n t a t i o n s  of Wark e t  a l . (1962)  i n  

o r d e r  t o  determine t h e  p r e s s u r e  dependence of Wh. 

was adopted f o r  n.  The temperature exponent b was determined from t h e  

d a t a  of Yamamoto and Onishi f o r  the  r e g i o n  between 225 and 600 cm-l. 

L and b a r e  t a b u l a t e d  i n  Table  1. 

--- 
A mean va lue  of 0 .9  

U 

Both 

V V 

With t h e  empi r i ca l  estimate of 3 .17  f o r  r t h e  t r ansmiss ion  i n  t h e  

r o t a t i o n a l  band was expressed by 

t 

7 = exp -BP-O.~L w 1 + 3.17 @P -1.1 LuW (&\ 
S 

IT bu 
I-. 

U \ T s *  
1 

2 i3 
I 

where B = 0.76 + (0 .58  + 0.48P ) . 

The t r ansmiss ions  i n  two s p e c t r a l  i n t e r v a l s  f o r  t h r e e  p r e s s u r e s  and a 

tempera ture  of 260 K were computed from Eq. (8) and compared w i t h  t h e  

cor responding  r e p r e s e n t a t i o n s  from Wark e t  a l . (1962)  i n  F i g .  3. --- 

V I  THE WINDOW REGION 

Transmission d a t a  for t h e  broad window reg ion ,  t aken  he re  a s  t h e  

-1 -1 i n t e r v a l  between 800 cm and 1200 cm , vary from one s tudy  t o  ano the r .  

I n  t h i s  s tudy  t h e  d a t a  of Roach and Goody (1958) 

t h e  t r ansmiss ion  for a number of p r e s s u r e s  and water-vapor amounts. 

w e r e  used t o  compute --- 



c 

F 

1 1  

I 

R e s u l t s  were f i t t e d  t o  the  expression 

-1 
and t h e  parameters k 

Table 1. The exponent a decreases  from near  un i ty  i n  t h e  c e n t r a l  i n t c r v a l s  

a s  e i t h e r  absorp t ion  band i s  approached, while  t h e  absorp t ion  c o e f f i c i e n t  

k v a r i e s  i n  t h e  oppos i te  sense.  Both parameters were f i t t e d  f o r  an 

average atmospheric pressure .  A more d e t a i l e d  pressure  dependence than  t h a t  

contained i n  Eq. (9) was devised b u t  t h e  d i f f e r e n c e s i n  r e s u l t s  were 

i n s i g n i f i c a n t  except  poss ib ly  along long s l a n t  pa ths .  Although Eq. (9) 

inc ludes  t h e  e f f e c t s  of wing absorp t ion  from d i s t a n t  carbon d ioxide  l i n e s ,  

t h e  e f f e c t s  of absorp t ion  from ozone or the  weak 1064 c m - l  and 961 c m - l  

bands of carbon d ioxide  have not been incorpora ted  i n  t h i s  t ransmiss ion  

model f o r  t h e  window region.  

and a v  a r e  t a b u l a t e d  f o r  each 25 cm i n t e r v a l  i n  
0 

v 

V 

Figure 4 i l l u s t r a t e s  t h e  t ransmiss ion  computed from E q .  (9) f o r  t h e  

-1 
925-950 c m  i n t e r v a l  versus  the product of water-vapor amount (W) and 

e f f e c t i v e  pressure  (P). The open dots i n  F i g .  4 were d e t e r m i n e d  from ;1 

comparble r e p r e s e n t a t i o n  by Wark e t  a l .  (1962) .  
-I- 

VI1 CARBON DIOXIDE TRANSMISSICN 

The b a s i c  d a t a  f o r  modeling t h e  carbon d ioxide  t ransmiss ion  were taken 

from Wark e t  a l .  (1962) and S t u l l  e t  a l .  (1963). The p r e s e n t a t i o n s  of Wark 

were based i n  p a r t  on d a t a  from Yamamoto and Sasamori (1962). S ince  the 

i n i t i a l  ana lyses  f o r  t h e  t e n  25 c m  i n t e r v a l s  between 550 c m  

were based on Wark's d a t a ,  the t ransmiss ion  model g e n e r a l l y  g i v e s  b e t t e r  

agreement a t  s tandard  condi t ions  wi th  Wark e t  a l . t h a n  w i t h  s t u l l  e t  a l .  

--- --- 
- 

-1 -1 and 800 c m - l  

--- --- 



Plots of the Wark data suggested a transmission expression in t h e  form 

12 

where the coefficient A is a function of both pressure and tenip-?rzture, 

parameter C is a function of pressure only, and W is ;he amdunt of carbon 

dioxide in atmos-cm. While Eq. (10) is not unique, it is olie of the 

simplest forms that appears to be adequate. If Wh still denotes the 

optical thickness for a transmission of one-half, and -In$ 

E, then Eq. (10) can be solved in the form 

is denoted by 

which shows the relationship between A and C. Furthermore, if is again 

described in the form given by Eq. (6) and if C is described in the form 

C = CsP , then Eq. (10) may be rewritten in the form 

'h 

m 

h The three parameters L n, and b were estimated from analyses of the jY 
I)) V 

data; minor modifications in the parameters were introduced after an 

examination of the behavior of computed transmissions for arbitrary pressures. 

The pressure exponent n increases with decreasing pressure and this variation 

is significant for computations based on the adopted transmission expression. 

Consequently, for carbon dioxide the pressure exponent n was allowed to v a r y  

with P in the following manner: 
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n = 0 . 4  - 0.15 log P, f o r  P 2 .00632,  

= .73, for P < .00631. 

The linear variation of n with log P is equivalent to an expression of the 

log W by a second-order polynomial in log P instead of a first-order 

polynomial as in Eq. (6). A magnitude of 0.8 f o r  the exponent m, taken a s  

a constant with respect to wave number, was selected by seeking the highest 

value that would still yield the proper variation in transmission for the 

lowest optical paths to be included in application. Successive comparisons 

of the computed transmission to available data led to the selection of 

0 . 4  for Cs, invariant with wave number. 

h 

2E 
Finally, with the definitions K,- - L and a 3 n -1.6, Eq. (11) becomes 

cs 

where K, and b have been tabulated for each spectral interval in Table 1. 
V 

Comparisons of the transmissions computed from Eq. (13) with the 

presentation of Wark et aL(1962) and Stull et al.(1963) are illustrated 

in Fig, 5 for two spectral intervals, standard temperature, and three 

-1 
pressures. The interval 650-675 cm corresponds to the central portion 

of the band, 

interval, 750 to 775 cm , for which the representations are probably less 

reliable than in strong-absorption intervals. Figure 6(a) shows the 

--- --- 

Additional comparisons are made in Fig. 6 for a weak-absorption 

-1 

pressure dependence of the transmission at standard temperature and Fig. 

displays the temperature dependence at standard pressure. 

6(b) 

Although there 

are slight differences in the spectral widths used by Wark et al.(1962) 

and by Stull et al., a discrepancy between estimates cf the sizable temperature 

--- 

--- 
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effect is apparent. A comparison of Figs. 6(a) and 6(b) reveals that 

the pressure dependence exceeds the temperature dependence. 
, 

VI I I CONCLUS I ONS 

A model has been devised for the direct computation of infrared 

transmission through atmospheric water vapor and carbon dioxide under 

arbitrary conditions of absorber concentration, pressure, and temperature. 

Sufficient detail has been presented for the application and alteration 

of the model. Computations of the transmission described by the model 

have been shown to be comparable to recent published data. In its 

present form the model provides a practical tool for the numerical 

treatment of many radiative problems, 
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Table 1 - Parameters appearing in analytical expressions of transmission 

through water vapor and carbon dioxide (Symbols defined in text) 

c02 

K U  V 

ROTATIONAL H20 ROTATIONAL H20 

b b Interval L b 
V V V 

Interval L 
V 

-1 cm -1 (pr. cm1-l cm -1 (pr. cm1-l ( a t mos T cm) 

25-50 670.0 425-450 30.500 2.75 

50-75 1350.0 450-475 20.500 1.55 

75-100 2450.0 

100-125 2500.0 

125-150 2550.0 

150-175 2100.0 

175-200 1250.0 

475-500 11.000 1.85 

500-525 6.050 2.30 

525-550 3.700 1.55 

550-575 2.800 1.35 0.00145 

575-600 2.100 0.60 0.03850 

200-225 1050.0 600-625 1.550 

225-250 955.0 0.45 625-650 1.100 

0.18000 

1.70000 

250-275 710.0 1.15 650-675 0.820 6.95000 

275-300 410.0 1.65 6 75 - 700 0.615 4.80000 

300-325 290.0 1.95 700-725 0.470 0.53000 

325-350 265.0 2.60 72 5- 7 50 0.370 0.11500 

3 50-375 140.0 3.00 750-775 0.290 

375-400 53.5 2.45 775-800 0.230 1 

0.01050 

0.00096 

4.7 

4.1 

3.1 

2.2 

0.0 

1.0 

3.0 

3.6 

4.1 

4.7 

400-425 37.5 2.55 



Table 1 - continued * '  

4 H20 WINDOW 

In t e rva l  k a 
V V 

In t e rva l  k a 
v V 

(pr .  cm1-l 
-1 

(pr.  cm1-l cm -1 cm 

800-825 ,170 .775 1000-1025 .091 .885 

825-850 .135 .820 

850-875 .115 .860 

875-900 . l o5  .880 

900- 92 5 .095 .885 

925-950 .091 .885 

950-975 .091 .885 

975-1000 .091 .885 

1025- 1050 .091 .885 

1050-1075 .091 .885 

1075- 1100 .091 .880 

1100- 1125 .095 .860 

1125- 1150 . l o 5  .830 

1150-1175 .115 .795 

1175-1200 .125 .760 

VIBRATIONAL - ROTATIONAL H20 

In t e rva l  L* In t e rva l  In t e rva l  L* 
u V 

(pr .  cm1-l 
-1 (pr .  crn1-l cm (pr. cm1-l cm 

-1 -1 cm 

1200-1225 0.28 1525-1550 570 1850-1875 18.00 

1225-1250 0.42 1550-1575 295 1875-1900 11.00 

1250-1275 0.75 1575-1600 87 1900-1925 7.70 

1275-1300 1.50 1600-1625 110 1925- 1950 6.00 

1300-1325 3.10 1625- 1650 235 1950- 1975 4.20 

1325-1350 6.40 1650-1675 370 1975-2000 2.80 

1350-1375 13.50 1675-1700 405 2000-2025 1.50 

1375-1400 30.00 1700- 1725 320 2025-2050 0.90 

1400-1425 45.00 1725-1750 220 2050-2075 0.60 

1425- 1450 79.00 1750- 1775 135 2075-2100 0.40 

1450-1475 120.00 1775- 1800 87 2100-2125 0.28 

1475-1500 220.00 1800- 1825 52 2 12 5- 2 150 0.20 

1500-1525 470.00 1825-1850 30 
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FIG. 1 CARBON D I O X I D E  TRANSMISSION A T  300K A N D  1-atm PRESSURE 
(from StulI et al., 1963) 
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OF WATER VAPOR. Note: WYL, Work et al. (1962); WSP, Wyatt et al. (1962). 
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